Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(6): e0287918, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37379275

RESUMO

The surfaces of concrete structures are often coated with protective materials to minimize corrosion and weathering-based deterioration. Therefore, it is important to monitor the aging of the coating materials and their overall condition to extend the service lifetime of the structure effectively. Near-infrared spectroscopy (NIRS) is a contactless, nondestructive, rapid, and convenient method for material characterization; therefore, it is useful for onsite inspection of coating materials. Hence, in this study, we attempt to determine whether NIRS can be used for simple inspection for health monitoring of organic resin-based coating materials. In addition to identifying different severities of peeling damage, we characterize the ultraviolet-induced deterioration of coating materials with different thicknesses using diffuse reflection spectra acquired in the near-infrared wavelength region. For independent comparison with the NIR spectra, the state of the coating materials on the mortar specimens was analyzed using a combination of Fourier-transform infrared spectroscopy and scanning electron microscopy, while the state of the underlying mortar specimens was analyzed using permeability and salt-water immersion tests. The results confirm that the NIRS could detect the degradation of coating materials at early stages of deterioration before their permeability had been affected. NIRS offers the possibility of intermittent monitoring of coating deterioration. In addition, because the NIR spectrometer is portable, it can help in inspecting high-rise areas and areas that are difficult to reach. Therefore, we believe that NIRS is a simple, safe, and inexpensive method for inspection of surface coating materials.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Espectroscopia de Infravermelho com Transformada de Fourier
2.
MRS Adv ; 7(20): 405-409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35340397

RESUMO

Cotton textiles with plasmonic functions were obtained by dense immobilization of gold nanoparticles (AuNPs) performed by reduction of tetrachoroaurate (III) ion electrostatically adsorbed on the cotton fibers. Polyethyleneimine (PEI) adsorbed on the cotton fibers supports dense adsorption of tetrachloroaurate (III) ions, and the subsequent reduction with trisodium citrate provides dense AuNPs. The resulting cotton textile immobilized with AuNPs performed heating by irradiation of continuous visible light based on a plasmonic photothermal effect.

3.
ACS Omega ; 5(22): 12692-12697, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32548452

RESUMO

A study of the electrical properties of metallic nanowires requires a clear analysis of conductive networks. In this study, we demonstrated that the conducting networks of Ag nanowires (AgNW) could be visually observed by examination of the voltage contrast of the scanning electron microscopy (SEM) images, which was caused by the differences in the degrees of charging of AgNWs. When AgNWs dispersed on a quartz glass were irradiated by primary electrons, the substrate became negatively charged. This induced positive charges on the AgNWs in contact with the electrodes. As a result, AgNW networks connected to electrodes appeared dark in the SEM image, while the isolated AgNWs appeared brighter. By varying the acceleration voltage of the primary electrons, the extent of charging could be controlled, which, in turn, enabled the observation of the voltage contrast of AgNWs. Using the voltage contrast of SEM images, we could visually distinguish the AgNW networks having an electrical connection with the electrode from the ones that were not connected to the electrode.

4.
Soft Matter ; 16(13): 3276-3284, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163084

RESUMO

Liquid inks deposited on substrates undergo spreading, coalescence, dewetting and subsequent drying kinetics, which limit the controllability of the cross-sectional shape and resolution of the printed patterns. By contrast, when the ink layers are previously semidried (highly-concentrated) and patterned on a polydimethylsiloxane sheet, single-micrometer features are resolved. Here we present the rheological, fracture and adhesive properties of semidried nanoparticle dispersion ink layers, which optimize the patterning of reverse offset printing with 5 µm spatial resolution. Under the appropriate patterning conditions, when the volume fraction φ of the particles in the semidried layers was approximately 46 v/v%, the layer elasticity was dominant in the linear viscoelastic region and a Burgers-type creeping property appeared. Under tensile strain, the semidried layers suddenly fractured at the sites of patterns with sharply defined sidewalls. In the semidried thin layers dominated by viscosity (lower φ), the pattern edges were degraded owing to local transfer instability and possible subsequent spreading. Over-drying reduced the adhesiveness of the ink layers, implying an upper limit of φ for successful patterning. The characteristics of semidried inks contribute to establishing a versatile ink-formulation scheme of various functional nanomaterials for high-resolution printed applications.

5.
ACS Appl Mater Interfaces ; 11(43): 40602-40612, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31569944

RESUMO

Thin-film layers of nanoparticles exhibit mechanical fragility that depends on their interactions. Balancing the cohesive force of particles with their interfacial adhesion to a substrate enables the selective transfer of micrometer-scale layer features. Here, the versatility of this adhesion-based transfer approach from poly(dimethylsiloxane) (PDMS) is presented by demonstrating micropatterns of various functional nanoparticulate materials, including Ag, Cu, indium tin oxide, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, and dielectric silica. With the attachment of the Johnson-Kendall-Roberts interaction to a simple strain model of particle layers during the patterning process, the patterning criteria for successful printing at both macroscale and nanoscale levels are deduced. Discrete element modeling analysis was used to validate the scaling laws and to highlight the fracture modes of particle layers during the patterning process. In particular, the balance among cohesive forces in the tensile direction and in the shear direction and the adhesion force at the layer-PDMS interface mainly regulates the patterning quality of adhesion patterning.

6.
ACS Appl Mater Interfaces ; 10(29): 24339-24343, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29972298

RESUMO

The submicrometer resolution printing of various metal acetylacetonate complex inks including Fe, V, Mn, Co, Ni, Zn, Zr, Mo, and In was enabled by a robust ink formulation scheme which adopted a ternary solvent system where solubility, surface wettability, and drying as well as absorption behavior on a polydimethylsiloxane sheet were optimized. Hydrogen plasma in heated conditions resulted in bombarded, resistive, or conductive state depending on the temperature and the metal species. With a conductivity-bestowed layer of MoO x and a plasma-protecting layer of ZrO x situated on the top of an IGZO layer, a solution-processed TFT exhibiting an average mobility of 0.17 cm2/(V s) is demonstrated.

7.
Langmuir ; 33(23): 5685-5695, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28525285

RESUMO

We describe efficient visible- and near-infrared (vis/NIR) light-driven photocatalytic properties of hybrids of Cu2O and plasmonic Cu arrays. The Cu2O/Cu arrays were prepared simply by allowing a Cu half-shell array to stand in an oxygen atmosphere for 3 h, which was prepared by depositing Cu on two-dimensional colloidal crystals with a diameter of 543 or 224 nm. The localized surface plasmon resonances (LSPRs) of the arrays were strongly excited at 866 and 626 nm, respectively, at which the imaginary part of the dielectric function of Cu is small. The rate of photodegradation of methyl orange was 27 and 84 times faster, respectively, than that with a Cu2O/nonplasmonic Cu plate. The photocatalytic activity was demonstrated to be dominated by Cu LSPR excitation. These results showed that the inexpensive Cu2O/Cu arrays can be excellent vis/NIR-light-driven photocatalysts based on the efficient excitation of Cu LSPR.

8.
ACS Appl Mater Interfaces ; 9(1): 750-762, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-28001029

RESUMO

We demonstrated the usefulness of Cu light-harvesting plasmonic nanoantennae for the development of inexpensive and efficient artificial organic photoelectric conversion systems. The systems consisted of the stacked structures of layers of porphyrin as a dye molecule, oxidation-suppressing layers, and plasmonic Cu arrayed electrodes. To accurately evaluate the effect of Cu nanoantenna on the porphyrin photocurrent, the production of Cu2O by the spontaneous oxidation of the electrode surfaces, which can act as a photoexcited species under visible light irradiation, was effectively suppressed by inserting the ultrathin linking layers consisting of 16-mercaptohexadecanoic acid, titanium oxide, and poly(vinyl alcohol) between the electrode surface and porphyrin molecules. The reflection spectra in an aqueous environment of the arrayed electrodes, which were prepared by thermally depositing Cu on two-dimensional colloidal crystals of silica with diameters of 160, 260, and 330 nm, showed clear reflection dips at 596, 703, and 762 nm, respectively, which are attributed to the excitation of localized surface plasmon resonance (LSPR). While the first dip lies within the wavelengths where the imaginary part of the Cu dielectric function is moderately large, the latter two dips lie within a region of a quite small imaginary part. Consequently, the LSPR excited at the red region provided a particularly large enhancement of porphyrin photocurrent at the Q-band (ca. 59-fold), compared to that on a Cu planar electrode. These results strongly suggest that the plasmonic Cu nanoantennae contribute to the substantial improvement of photoelectric conversion efficiency at the wavelengths, where the imaginary part of the dielectric function is small.

9.
Nat Commun ; 7: 11402, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27091238

RESUMO

Silver nanocolloid, a dense suspension of ligand-encapsulated silver nanoparticles, is an important material for printing-based device production technologies. However, printed conductive patterns of sufficiently high quality and resolution for industrial products have not yet been achieved, as the use of conventional printing techniques is severely limiting. Here we report a printing technique to manufacture ultrafine conductive patterns utilizing the exclusive chemisorption phenomenon of weakly encapsulated silver nanoparticles on a photoactivated surface. The process includes masked irradiation of vacuum ultraviolet light on an amorphous perfluorinated polymer layer to photoactivate the surface with pendant carboxylate groups, and subsequent coating of alkylamine-encapsulated silver nanocolloids, which causes amine-carboxylate conversion to trigger the spontaneous formation of a self-fused solid silver layer. The technique can produce silver patterns of submicron fineness adhered strongly to substrates, thus enabling manufacture of flexible transparent conductive sheets. This printing technique could replace conventional vacuum- and photolithography-based device processing.

10.
Nanotechnology ; 25(31): 315402, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25030613

RESUMO

We demonstrate a new approach to plasmonic enhanced photocatalytic water splitting by developing a novel core-shell Ti@TiO2 brush nanostructure where an elongated Ti nanorod forms a plasmonic core that concentrates light inside of a nanotubular anodic TiO2 shell. Following the ubiquitous element approach aimed at providing an enhanced device functionality without the usage of noble or rare earth elements, we utilized only inexpensive Ti to create a complex Ti@TiO2 nanostructure with an enhanced UV and Vis photocatalytic activity that emerges from the interplay between the surface plasmon resonance in the Ti core, Vis light absorption in the Ti-rich oxide layer at the Ti/TiO2 interface and UV light absorption in the nanotubular TiO2 shell.

11.
Nat Commun ; 4: 2855, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24335751

RESUMO

Surface plasmon excitation provides stronger enhancement of the fluorescence intensity and better sensitivity than other sensing approaches but requires optimal positioning of a prism to ensure optimum output of the incident light. Here we describe a simple, highly sensitive optical sensing system combining surface plasmon excitation and fluorescence to address this limitation. V-shaped fluidic channels are employed to mimic the functions of a prism, sensing plate, and flow channel in a single setup. Superior performance is demonstrated for different biomolecular recognition reactions on a self-assembled monolayer, and the sensitivity reaches 100 fM for biotin-streptavidin interactions. Using an antibody as a probe, we demonstrate the detection of intact influenza viruses at 0.2 HA units ml⁻¹ levels. The convenient sensing system developed here has the advantages of being prism-free and requiring less sample (1-2 µl), making this platform suitable for use in situations requiring low sample volumes.


Assuntos
Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Ressonância de Plasmônio de Superfície/métodos , Anticorpos/química , Biotina/química , Fluorescência , Ouro/química , Vírus da Influenza A Subtipo H3N2/química , Estreptavidina/química , Ressonância de Plasmônio de Superfície/instrumentação
12.
ACS Nano ; 7(11): 9997-10010, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24090528

RESUMO

Ordered arrays of copper nanostructures were fabricated and modified with porphyrin molecules in order to evaluate fluorescence enhancement due to the localized surface plasmon resonance. The nanostructures were prepared by thermally depositing copper on the upper hemispheres of two-dimensional silica colloidal crystals. The wavelength at which the surface plasmon resonance of the nanostructures was generated was tuned to a longer wavelength than the interband transition region of copper (>590 nm) by controlling the diameter of the underlying silica particles. Immobilization of porphyrin monolayers onto the nanostructures was achieved via self-assembly of 16-mercaptohexadecanoic acid, which also suppressed the oxidation of the copper surface. The maximum fluorescence enhancement of porphyrin by a factor of 89.2 was achieved as compared with that on a planar Cu plate (CuP) due to the generation of the surface plasmon resonance. Furthermore, it was found that while the fluorescence from the porphyrin was quenched within the interband transition region, it was efficiently enhanced at longer wavelengths. It was demonstrated that the enhancement induced by the proximity of the fluorophore to the nanostructures was enough to overcome the highly efficient quenching effects of the metal. From these results, it is speculated that the surface plasmon resonance of copper has tremendous potential for practical use as high functional plasmonic sensor and devices.


Assuntos
Cobre/química , Metais/química , Coloides/química , Fluorescência , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Nanotecnologia , Ácidos Palmíticos/química , Tamanho da Partícula , Porfirinas/química , Dióxido de Silício , Ressonância de Plasmônio de Superfície , Propriedades de Superfície , Temperatura
13.
Langmuir ; 27(21): 12916-22, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21955039

RESUMO

In this study, we analyzed adsorption and binding behaviors of citrate-capped silver nanoparticles (AgNPs) on a pyridyl-terminated surface using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Adsorption of the AgNPs onto the pyridyl-terminated silicon wafer surface was completed through pH-controlled sol immersion. The adsorption occurred predominantly at a pH less than the pK(b) value of the pyridyl group and more than the pK(a1) of citric acid, indicating that the driving force behind adsorption was electrostatic interaction. Adsorption of citrate onto the pyridyl group also occurred at pK(a1) < pH < pK(b) without AgNPs. According to XPS in the N1s region, larger deprotonation from the pyridinium-formed pyridyl groups was demonstrated subsequent to adsorption of the AgNPs. The deprotonation from the pyridinium indicates the formation of the neutral pyridyl group as the counterpart of hydrogen bonding with the carboxyl group of citrate. The binding state between the pyridyl group and citrate surrounding AgNPs is expected to be kept stable through hydrogen bonding and van der Waals force derived from the AgNPs approach to the pyridyl surface.

14.
Small ; 7(4): 506-13, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21246715

RESUMO

The ability to control metal patterns at the micro- and nanoscales, along with the development of a simple fabrication method, is important to many applications in the fields of materials science, biological sensing, electronics, and photonics. Herein, a simple approach to fabricating gold micropatterns with controlled roughness is reported. In this approach, gold is evaporated onto a striped liquid micropattern formed on self-organized microwrinkles. Gold nanoribbons with higher roughness form on the liquid part of the substrate because the deposited gold atoms can diffuse, grow, and aggregate at the liquid-air interface, whereas flat gold films form on the solid part. The rough gold nanoribbons formed on the liquid can then be peeled off through contact with water. The extinction spectrum of the rough gold nanoribbons suggests characteristic surface-plasmon absorption. This shows the possibility of using rough gold nanoribbons with controlled shape in plasmonic technology.


Assuntos
Ouro/química , Líquidos Iônicos/química , Nanoestruturas/química , Nanotecnologia/métodos
15.
Langmuir ; 26(23): 18476-82, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21058678

RESUMO

In this Article, we present a novel method to detect adrenaline on poly(3-aminobenzylamine) (PABA) ultrathin films by electrochemical-surface plasmon resonance (EC-SPR) spectroscopy. We prepared a PABA film, which specifically reacts with adrenaline, on a gold electrode by electropolymerization of 3-aminobenzylamine. The specific reaction of benzylamine within the PABA structure with adrenaline was studied by XPS, UV-vis spectroscopy, and EC-SPR techniques. Adrenaline was detected in real time by EC-SPR spectroscopy, which provides simultaneous monitoring of both optical SPR reflectivity and electrochemical current responses upon injecting adrenaline into the PABA thin film. The number of changes in both current and SPR reflectivity on the injection of adrenaline exhibited the linear relation to the concentration, and the detection limit was 100 pM. The responses were distinctive to those for uric acid and ascorbic acid, which are major interferences of adrenaline.


Assuntos
Eletroquímica/métodos , Epinefrina/análise , Epinefrina/química , Ressonância de Plasmônio de Superfície/métodos , Ácido 4-Aminobenzoico/química , Adsorção , Animais , Ácido Ascórbico/química , Técnicas de Química Analítica , Humanos , Espectroscopia Fotoeletrônica/métodos , Espectrofotometria Ultravioleta/métodos , Raios Ultravioleta
16.
Nanotechnology ; 20(8): 085301, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19417445

RESUMO

In this study, micro/nanopatterning and assembly of single-walled carbon nanotube-organic semiconductor composites using dip-pen nanolithography, microcontact printing and fountain-pen nanolithography techniques are described. First, the solubilization abilities of carbon nanotubes with Alcian blue-tetrakis(methyl pyridium) chloride (AB) are investigated by UV-visible spectroscopy. The assembly of the composites obtained by microcontact printing technique shows well-ordered monolayers of 1 microm linewidth pattern. Dip-pen nanolithography shows that 11 nm height and 100 nm linewidth can be obtained on silicon wafer substrates. Finally, fountain-pen nanolithography is shown as a possible large-scale carbon nanotube assembly technique.


Assuntos
Cristalização/métodos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Compostos Orgânicos/química , Semicondutores , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanotubos de Carbono/ultraestrutura , Tamanho da Partícula , Fotografação , Propriedades de Superfície
17.
Nanotechnology ; 19(9): 095503, 2008 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-21817670

RESUMO

An evanescent-field-coupled waveguide-mode sensor with a multilayer structure consisting of a dielectric waveguide, a thin reflecting layer, and a glass substrate illuminated under the Kretschmann configuration operates as a sensor that is capable of detecting modifications in the dielectric environment near the waveguide surface with superior sensitivity by measuring the change in reflectivity. The sensitivity of the sensor is strongly dependent on the optical constants of the reflecting layer. Numerical simulations show that a sensor having a reflecting layer with a small value of the real part of the complex refractive index shows a good sensitivity for both S- and P-polarized light. Materials with values of the real and imaginary parts of the complex refractive index of >4 and ∼0.5, respectively, are suitable for use as reflecting layers when S-polarized light excites only the lowest order waveguide mode. The simulations were experimentally confirmed using sensors with Au, Cu, Cr, W, a-Si, or Ge reflecting layers deposited by radiofrequency magnetron sputtering by observation of specific adsorption of streptavidin on biotinyl groups using an S-polarized laser beam with a wavelength of 632.8 nm. From the results, guidelines are given for the fabrication of preferred sensor configurations.

18.
Opt Express ; 15(5): 2592-7, 2007 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-19532497

RESUMO

Sensors based on surface plasmons or waveguide modes are at the focus of interest for applications in biological or environmental chemistry. Waveguide-mode spectra of 1 mum-thick pure and perforated silica films comprising isolated nanometric holes with great aspect ratio were measured before and after adhesion of streptavidin at concentrations of 500 nM. The shift of the angular position for guided modes was nine times higher in perforated films than in bulk films. Capturing of streptavidin in the nanoholes is at the origin of that largely enhanced shift in the angular position as the amplitude of the guided mode in the waveguide perfectly overlaps with the perturbation caused by the molecules. Hence, the device allows for strongly confined modes and their strong perturbation to enable ultra-sensitive sensor applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...